黄土高原冬小麦产量差及其水氮利用效率分析
Alternative TitleAnalysis on yield gaps and its water and nitrogen use efficiency of winter wheat in Loess Plateau
张玲玲
Subtype博士
Thesis Advisor冯浩
2019-05-20
Degree Grantor中国科学院水土保持与生态环境研究中心
Place of Conferral中国科学院水土保持与生态环境研究中心
Degree Name农学博士
Degree Discipline水土资源高效利用
Keyword冬小麦 产量差 产量提升 灌溉水利用效率 氮肥农学效率
Abstract

黄土高原是中国主要的冬小麦产地之一,探究该地区实际产量、水分限制产量、氮素限制产量与潜在产量之间产量差的时空分布特征,有助于定量估计区域内冬小麦产量的可提升空间,揭示限制产量提高的主要因素,明确未来提升作物产量的重点区域和优化增产的关键措施。本研究在全球产量差评估系统中的GYGA-EDGlobal Yield Gap Atlas Extrapolation Domain)法划分的气候区基础上,根据冬小麦生育期内需要的有效生长积温(GDD)、干旱指数(年平均降水量/年平均蒸腾量)、DEM和地形因素,在保持了县界完整性的前提下,将黄土高原冬小麦种植区划分为4个农业气候区(Ⅰ,Ⅱ,Ⅲ和Ⅳ)。基于冬小麦种植区内32个气象站1961-2016年逐日气象资料、土壤数据、作物管理资料和各省市的统计年鉴,结合APSIM–Wheat模型模拟和ArcGIS空间分析功能,分析研究区冬小麦各级产量差的时空分布特征,解析引起产量差的主要限制因素并量化其限制程度。根据1961-2016年冬小麦生长季内逐年的降水量,将其划分为三种降水年型,明确了不同降水年型下的灌溉水利用效率(Irrigation water use efficiencyIWUE)和氮肥农学效率(Agronomic efficiency of applied NitrogenAEN),并探讨了不同降水年型下黄土高原各区域冬小麦产量的提升空间。主要结果如下:

11961-2016年黄土高原冬小麦潜在产量最高,氮素限制产量最低,产量面积加权平均值分别为8868.62kgha-15415.61 kgha-155年来潜在产量、水分限制产量每年分别减少9.6 kg ha-121.17 kg ha-1yr-1,氮素限制产量则每年增加0.92kg ha-1。水分限制产量变异系数最大,为14.3%,该产量稳定性最差。各气候区中,区冬小麦潜在产量最高,氮素限制产量最低。区潜在产量最低而氮素限制产量最高。区水分限制产量最高,而区水分限制产量最低。

2)气候变化背景下,冬小麦生长季内的太阳辐射、降水量、最高温度分别是影响黄土高原冬小麦潜在产量、水分限制产量和氮素限制产量的主要因素,均为正效应(P<0.01),相关系数分别为0.640.830.63

3)黄土高原冬小麦实际产量的空间差异明显,整体呈西北高东南低的空间分布特征,全区平均产量为3382kg ha-1,以每年增加64.99 kg ha-1的幅度上升。提高Ⅰ区的化肥施入,Ⅱ和Ⅲ区的农业机械投入,Ⅳ区的灌溉量可以最大程度地增产。

4)黄土高原冬小麦产量仍旧具有很大的提升空间,影响各气候区产量提高的主要限制因素不同。黄土高原冬小麦实际产量仅达到潜在产量的43%,提升空间较大。两者之间产量差的平均值为5046.58 kg ha-12005-2016年,每年174.62 kg ha-1的幅度下降。水分限制产量占潜在产量的比例为73%,仍旧有一定的提升空间。两者之间产量差的平均值为2353 kg ha-155年来该产量差平均每年增加11.57 kg ha-1。由氮素限制引起的产量差平均为3430 kg ha-1。氮素限制产量占潜在产量的比例为61%,提升空间稍大。55年来该产量差呈缩小趋势,每年下降11.57 kg ha-1。氮肥对黄土高原冬小麦产量影响最大,水分其次,但是对各地区的影响程度不同,其中氮肥水平对Ⅰ区的影响最大,水分投入对Ⅳ区的影响最大。

5)干旱年型黄土高原冬小麦IWUE最高,为52.31%。在该年型下通过补充灌溉,产量的可提升空间最高,为39.9%。各气候区中,增加Ⅰ区的灌溉投入,得到的收益回报更大。湿润年型黄土高原冬小麦AEN最高,为50.11%。该年型下施加氮肥产量提升空间最高,为40.3%。提高Ⅲ区的氮肥利用效率是缩减该区氮肥限制造成的产量差的关键。

Other Abstract

The Loess Plateau is one of the major winter wheat producing areas in China. We focused on the spatial distribution characteristics and temporal variation trends of yield gaps in four agricultural climatic zones of the Loess Plateau, including yield gap between actual yield and potential yield, yield gap between water limited yield and potential yield, and yield gap between nitrogen limited yield and potential yield. This will help to estimate quantitatively the improvement space of winter wheat yield in the study area, reveal the factors that limit the yield increase, and identify the significant regions to increase winter wheat yield in the future, as well as practical measures to increase yield. In this study, we based on the climate region of the GYGA-ED (Global Yield Gap Atlas Extrapolation Domain) method in the global yield difference assessment system, according to the growing degree days (GDD), the annual aridity index (the mean annual precipitation/the mean annual potential evapotranspiration), DEM and topographical factors, under the premise that maintained the integrity of the county line, the loess plateau winter wheat planting area can be divided into four agricultural climate zones (, , and ). Based on the climate conditions, soil data, crop management data and statistical data, we used the APSIM–Wheat model and ArcGIS to analyze the temporal and spatial distribution characteristics of the winter wheat yield gaps in the study area, analyze the main limiting factors that cause the yield gaps, and quantify the degree of restriction. We have clarified the irrigation water use efficiency (IWUE) and agronomic efficiency of applied nitrogen (AEN) under different category years, and explored the improvement space of winter wheat yield in each agricultural climatic zones of the Loess Plateau. Main results were as follows:

(1) From 1961 to 2016, the weighted average planting area of the potential yield and nitrogen limited yield of winter wheat on the Loess Plateau are 8868.62kgha-1 and 5415.61kgha-1, respectively. In the past 55 years, the potential yield and water limited yield decreased by 9.6 kgha-1, 21.17kgha-1 and nitrogen limited yield increased by 0.92 kgha-1. The coefficient of variation of water limited yield is 14.3%, respectively. It can be seen that the water limited yield in the Loess Plateau is low and the stability is poor. Among the climatic zones, the potential yield of zoneis the highest, and that of nitrogen limited yield is the lowest. Zone has the lowest potential yield, while its nitrogen limited yield the highest. Zone has the highest water limited yield and Zone has the lowest water limited yield.

(2) Under the background of climate change, the solar radiation, precipitation and the maximum temperature in the growing season of winter wheat are the main factors affecting the potential yield, water restricted yield and nitrogen limited yield of winter wheat in the whole Loess Plateau, all of which are positive effects (P<0.01), and the correlation coefficients are 0.64, 0.83 and 0.63, respectively.

(3) The spatial difference of actual yield of winter wheat in the Loess Plateau is obvious, and overall spatial distribution is high in the northwest and low in the southeast. The average yield of the whole region is 3382kg ha-1. In the past decade, the average actual yield has significantly increased with a rate of 64.99 kg ha-1 per year. Increase fertilizer application in Zone , agricultural machinery inputs in Zones and , and irrigation in Zone can increase yield of winter wheat to the greatest extent.

(4) The winter wheat yield on the Loess Plateau still has a lot of room for improvement, and the main limiting factors affecting the yield increase in each climate zone are different. The average yield gap between the potential yield and the actual yield of winter wheat on the Loess Plateau is 5,416.58 kg ha-1, according for 57% of potential yield, which has a large scope for improvement. The yield gap has decreased with a rate of 174.62 kg ha-1 yr-1in the past 11 years. The average yield gap between winter wheat potential yield and water limited yield is 2353 kg ha-1, according for 27% of potential yield. In the past 55 years, the yield gap has increased with a rate of 11.57 kg ha-1 yr-1. The yield gap caused by nitrogen limitation of winter wheat on the Loess Plateau is 3430 kgha-1. The ratio of nitrogen limited yield to potential yield is 61%, and the scope for improvement is large. The yield gap has decreased with a rate of 11.57 kg ha-1 per year during the past 55 years. It can be seen from the above analysis that nitrogen has the greatest impact on winter wheat yield in Loess Plateau, followed by water, but the degree of impact on each agricultural climatic zone is different. Nitrogen has the greatest impact on Zone I, and water input has the greatest impact on Zone .

(5) The IWUE of winter wheat in Loess Plateau was the highest in the dry years, which was 52.31%. In this precipitation year type, the yield can be improved by supplementary irrigation with the highest space of 39.9%. Under different climatic zones, the irrigation input of Zoneis increased, and the return on income is greater. The AEN of the wet years loess plateau was the highest, which was 50.11%. In this precipitation year type, application of nitrogen fertilizer production has the highest room for improvement, at 40.3%. Increasing the efficiency of nitrogen use in Zone is the key to reducing the yield difference caused by nitrogen fertilizer restrictions in this area.

Subject Area土壤学
MOST Discipline Catalogue农学 ; 农学::农业资源与环境
Table of Contents

第一章 绪论.............................................................................................................. 1

1.1 产量差内涵.................................................................................................. 1

1.2 产量差研究进展......................................................................................... 2

1.3 产量差研究方法......................................................................................... 4

1.4 资源利用效率研究进展.................................................................. 7

1.5 研究目的、内容与技术路线.................................................................. 9

1.5.1 研究目的............................................................................................ 9

1.5.2 研究内容............................................................................................ 9

1.5.3 技术路线.......................................................................................... 10

第二章 材料与方法................................................................................................... 13

2.1 研究区域概况............................................................................................... 13

2.2 数据与来源................................................................................................... 16

2.2.1 气象数据............................................................................................. 16

2.2.2土壤数据.............................................................................................. 16

2.2.3 作物数据............................................................................................. 16

2.2.4 统计数据............................................................................................. 16

2.3 研究方法....................................................................................................... 17

2.3.1 太阳辐射计算..................................................................................... 17

2.3.2 参考作物蒸发蒸腾量......................................................................... 17

2.3.3 气候倾向率计算................................................................................. 18

2.3.4 变异系数计算..................................................................................... 18

2.3.5 作物模型模拟结果评价指标............................................................. 19

2.3.6 ArcGIS空间插值................................................................................. 19

2.3.7 区域平均产量计算............................................................................. 20

2.3.8 产量差及限制因子............................................................................. 20

2.3.9 降水年型的确定................................................................................. 21

2.3.10 灌溉水利用效率............................................................................... 22

2.3.11 氮肥农学效率.................................................................................... 22

第三章 APSIM模型有效性验证.............................................................................. 26

3.1 APSIM模型简介........................................................................................... 26

3.2 APSIM模型结构和组成............................................................................... 27

3.3 APSIM模型参数确定................................................................................... 33

3.3.1 气象参数............................................................................................. 33

3.3.2 土壤参数............................................................................................. 33

3.3.3 冬小麦品种参数的确定..................................................................... 34

3.3.4 管理措施参数..................................................................................... 36

3.4 APSIM模型验证........................................................................................... 36

3.5 小结............................................................................................................... 41

第四章 黄土高原冬小麦各级产量分布特征与影响因素分析............................... 42

4.1 黄土高原冬小麦生长季内农业气候资源变化特征................................... 42

4.1.1 冬小麦生长季内热量资源的变化特征............................................. 43

4.1.2 冬小麦生长季内降水量的变化特征................................................. 48

4.1.3 冬小麦生长季内辐射资源的变化特征............................................. 50

4.1.4冬小麦生长季内潜在蒸散量的变化特征.......................................... 52

4.2 黄土高原冬小麦潜在产量的时空分布特征............................................... 54

4.2.1 冬小麦潜在产量空间分布特征......................................................... 54

4.2.2 冬小麦潜在产量时间变化趋势......................................................... 56

4.3 黄土高原冬小麦水分限制产量的时空分布特征....................................... 58

4.3.1 冬小麦水分限制产量空间分布特征................................................. 59

4.3.2 冬小麦水分限制产量时间变化趋势................................................. 60

4.4 黄土高原冬小麦氮素限制产量的时空分布特征....................................... 62

4.4.1 冬小麦氮素限制产量空间分布特征................................................. 62

4.4.2 冬小麦氮素限制产量时间变化趋势................................................. 64

4.5 气候变化对黄土高原冬小麦各级产量的影响........................................... 65

4.6小结................................................................................................................ 69

第五章 黄土高原冬小麦实际产量分布特征与影响因素分析............................... 71

5.1 黄土高原冬小麦生产条件特征分析........................................................... 71

5.1.1 黄土高原冬小麦种植面积时空分布特征......................................... 71

5.1.2 黄土高原冬小麦种植区农业投入情况分析..................................... 75

5.2 黄土高原冬小麦实际产量时空分布特征分析........................................... 79

5.3 黄土高原冬小麦实际产量影响因素分析................................................... 82

5.4 小结............................................................................................................... 84

第六章 黄土高原冬小麦产量差和水氮利用效率分析........................................... 87

6.1 冬小麦潜在产量与实际产量之间产量差的时空分布....................... 87

6.1.1空间分布特征...................................................................................... 87

6.1.2 时间变化趋势..................................................................................... 89

6.2 冬小麦潜在产量与水分限制产量之间产量差的时空分布....................... 91

6.2.1空间分布特征...................................................................................... 91

6.2.2 时间变化趋势..................................................................................... 93

6.3 冬小麦潜在产量与氮素限制产量之间产量差的时空分布....................... 95

6.3.1 空间分布特征..................................................................................... 95

6.3.2 时间变化趋势..................................................................................... 97

6.4 黄土高原冬小麦产量差限制因素解析............................................... 99

6.5 水氮利用效率和冬小麦产量潜力提升分析............................................. 102

6.5.1 各区域冬小麦灌溉水利用效率和产量潜力提升........................... 102

6.5.2 各区域氮肥利用效率和产量潜力提升............................................ 110

6.6 小结.............................................................................................................. 113

结论与展望.................................................................................................. 117

7.1 主要结论...................................................................................................... 117

7.2 创新点.......................................................................................................... 119

7.3研究不足与展望.......................................................................................... 120

参考文献................................................................................................................... 121

作者简历................................................................................................................... 135

Pages153
Language中文
Document Type学位论文
Identifierhttp://ir.iswc.ac.cn/handle/361005/8737
Collection水土保持研究所2016年—论文产出分析报告_2016年水土保持研究所 论文产出分析报告
Recommended Citation
GB/T 7714
张玲玲. 黄土高原冬小麦产量差及其水氮利用效率分析[D]. 中国科学院水土保持与生态环境研究中心. 中国科学院水土保持与生态环境研究中心,2019.
Files in This Item:
File Name/Size DocType Version Access License
张玲玲-答辩后修改-签字版.pdf(9356KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张玲玲]'s Articles
Baidu academic
Similar articles in Baidu academic
[张玲玲]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张玲玲]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.