ISWC OpenIR  > 水保所知识产出(1956-2013)
刘时城1; 温仲明; 陶 宇3; 朱朵菊2; 张 静4
Source Publication北 京 林 业 大 学 学 报

为研究不同地形校正方法对刺槐林分布信息提取的影响,以黄土丘陵区安塞县的刺槐人工林为例,使用 Cosine、
SCS、Minnaert、C、SCS + C 5 种校正方法对该地区 2015 年 7 月份的 Landsat8 OLI 影像进行地形校正,并采用基于样
析,并对提取结果进行精度评估,从而比较不同地形校正方法对刺槐人工林分布信息提取的影响。结果表明:1) 5
种地形校正方法削弱了遥感影像上地形阴影的视觉效果,其中 Cosine、SCS 校正存在过度校正的现象。2) 5 种地
形校正方法使得各波段辐射亮度值的均值和方差较之前发生变化,且 SCS + C 校正符合预期效果。3) Minnaert、
SCS + C 及 C 校正降低了太阳入射角的余弦值 cosi 与影像各波段的辐射亮度值间的回归直线斜率 m 的绝对值及相
关系数 r 的绝对值,Cosine、SCS 校正使两参数在部分波段上变大。4) 5 种地形校正方法都不同程度地降低刺槐提
取的漏分误差,但 Cosine 校正后用户精度降低了2. 47%;Minnaert、SCS + C 及 C 校正均提高了用户者精度和生产者
精度,以 C 校正的精度最高,生产者精度提高了 16. 66% ,用户精度提高了 2. 82% 。5) 5 种地形校正方法均提高
了 Kappa 系数值,以 C 校正最高,Kappa 系数值为 0. 76。本研究说明刺槐林遥感提取有必要进行地形校正,且应

Other Abstract

Robinia pseudoacacia is one of main tree species of environmental construction in loess hilly gully
region,and topographic shadow is a main factor affecting the accuracy of its information extraction by
remote sensing. A case study was carried out in Ansai County,Shaanxi Province of northwestern China,
which belongs to the loess hilly gully region to compare different topographic correction methods in
extracting information on the distribution of Robinia pseudoacacia. The topographic effects of the Landsat8
OLI(July,2015) were removed by 5 common topographic models (Cosine,SCS,Minnaert,C,SCS +  C),and the example-based feature extraction was used to extract the distribution of R. pseudoacacia.
The results were evaluated by visual comparison,regression analysis and ground-based validation.
Results show that: 1) all topographic correction methods could reduce the topographic shadow on the
remote sensing image and both the Cosine model and SCS model over-corrected the shade area’s image.
2) All topographic correction methods changed the mean and variance of each bands’radiance,and
SCS + C model reached the expected goal. 3) Minnaert model,SCS + C model and C model decreased
the absolute value of two regression model parameters(slope m and coefficient r) between all bands’
radiance and cosi,however Cosine model and SCS model increased the absolute value of two regression
model parameters in some bands. 4) All topographic correction methods could correct the image and
decrease the omission of the extraction of R. pseudoacacia’s distribution to a certain degree,but Cosine
model even decreased user’s accuracy by 2. 47%. Minnaert model,SCS + C model and C model could
improve both the producer’s accuracy and user’s accuracy,and the C model,considered as the best
method in the research,increased the producer’s accuracy and the user’s accuracy by 16. 66% and
2. 82%,respectively. 5) All topographic correction methods increased the Kappa coefficient,and the
Kappa coefficient was highest (0. 76) after C model’s correction. The result suggested that topographic
correction was necessary to the extraction and the model chosen should take the condition of the research
area into account,which provided an important basis for choosing a proper topographic method in the
process of extracting R. pseudoacacia’s distribution in the loess hilly gully region.

Keyword地形校正 刺槐 遥感提取
Document Type期刊论文
Recommended Citation
GB/T 7714
刘时城,温仲明,陶 宇,等. 不同地形校正方法对刺槐林遥感提取的影响[J]. 北 京 林 业 大 学 学 报,2017,39(5):25-33.
APA 刘时城,温仲明,陶 宇,朱朵菊,&张 静.(2017).不同地形校正方法对刺槐林遥感提取的影响.北 京 林 业 大 学 学 报,39(5),25-33.
MLA 刘时城,et al."不同地形校正方法对刺槐林遥感提取的影响".北 京 林 业 大 学 学 报 39.5(2017):25-33.
Files in This Item:
File Name/Size DocType Version Access License
不同地形校正方法对刺槐林遥感提取的影响_(675KB)期刊论文作者接受稿开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘时城]'s Articles
[温仲明]'s Articles
[陶 宇]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘时城]'s Articles
[温仲明]'s Articles
[陶 宇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘时城]'s Articles
[温仲明]'s Articles
[陶 宇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.